Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina.

نویسندگان

  • Nora Overlack
  • Dilek Kilic
  • Katharina Bauss
  • Tina Märker
  • Hannie Kremer
  • Erwin van Wijk
  • Uwe Wolfrum
چکیده

The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeats and SAM domain) contributes to the periciliary protein network in retinal photoreceptor cells. This study aimed to further elucidate the role of SANS by identifying novel interaction partners. In yeast two-hybrid screens of retinal cDNA libraries we identified 30 novel putative interacting proteins binding to the central domain of SANS (CENT). We confirmed the direct binding of the phosphodiesterase 4D interacting protein (PDE4DIP), a Golgi associated protein synonymously named myomegalin, to the CENT domain of SANS by independent assays. Correlative immunohistochemical and electron microscopic analyses showed a co-localization of SANS and myomegalin in mammalian photoreceptor cells in close association with microtubules. Based on the present results we propose a role of the SANS-myomegalin complex in microtubule-dependent inner segment cargo transport towards the ciliary base of photoreceptor cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.

The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We sho...

متن کامل

SANS (USH1G) expression in developing and mature mammalian retina

The human Usher syndrome (USH) is the most common form of combined deaf-blindness. Usher type I (USH1), the most severe form, is characterized by profound congenital deafness, constant vestibular dysfunction and prepubertal-onset of retinitis pigmentosa. Five corresponding genes of the six USH1 genes have been cloned so far. The USH1G gene encodes the SANS (scaffold protein containing ankyrin r...

متن کامل

The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins.

The hereditary hearing-vision loss disease, Usher syndrome I (USH1), is caused by defects in several proteins that can interact with each other in vitro. Defects in USH1 proteins are thought to be responsible for the developmental and functional impairments of sensory cells in the retina and inner ear. Harmonin/USH1C and Sans/USH1G are two of the USH1 proteins that interact with each other. Har...

متن کامل

Current Therapeutic Strategies for Human Usher Syndrome

The human Usher syndrome (USH) is the most frequent cause of combined deafblindness in man. It is clinically and genetically heterogeneous and at least twelve chromosomal loci are assigned to three clinical USH types. USH1, USH2 and USH3 differ in the severity of the symptoms: hearing loss, balance problems and retinal degeneration namely retinitis pigmentosa (RP), as well as in the progression...

متن کامل

Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G.

Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1813 10  شماره 

صفحات  -

تاریخ انتشار 2011